The Detection of Abrupt Changes using Recursive Identification for Power System Fault Analysis
نویسندگان
چکیده
This paper describes the application of the recursive parameter estimation technique used to detect the abrupt changes in the signals recorded during disturbances in the power network of South Africa. The recursive identification technique uses M parallel Kalman filters. Main focus has been to estimate the time-instants of the changes in the signal model parameters during the pre-fault condition and following the events like initiation of fault, circuit-breaker opening, autoreclosure of the circuit-breakers and the like. After segmenting the fault signal precisely into these event-specific sections, further signal processing and analysis can be performed on these segments, leading to automated fault recognition and analysis. In the scope of this paper we focus on the first task, that is, segmenting the fault signal into event-specific sections using the recursive identification technique.
منابع مشابه
Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملFault Type Estimation in Power Systems
This paper presents a novel approach for fault type estimation in power systems. The Fault type estimation is the first step to estimate instantaneous voltage, voltage sag magnitude and duration in a three-phase system at fault duration. The approach is based on time-domain state estimation where redundant measurements are available. The current based model allows a linear mapping between the m...
متن کاملImproving Data-based Wind Turbine Using Measured Data Foggy Method
The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملBasic Issues in Identification Scheme of a Self-Tuning Power System Stabilizer
Power system stabilizers have been widely used and successfully implemented for the improvement of power system damping. However, a fixed parameter power system stabilizer tends to be sensitive to variations in generator dynamics so that, for operating conditions away from those used for design, the effectiveness of the stabilizer can be greatly impaired. With the advent of microprocessor techn...
متن کامل